
Overview Package Class Use Tree Deprecated Index Help Java
TM
 2 Platform

Std. Ed. v1.4.2 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.util

Class ArrayList

java.lang.Object

 java.util.AbstractCollection

 java.util.AbstractList

 java.util.ArrayList

All Implemented Interfaces:

Cloneable, Collection, List, RandomAccess, Serializable

public class ArrayList

extends AbstractList

implements List, RandomAccess, Cloneable, Serializable

Resizable-array implementation of the List interface. Implements all optional list operations, and permits

all elements, including null. In addition to implementing the List interface, this class provides methods

to manipulate the size of the array that is used internally to store the list. (This class is roughly equivalent

to Vector, except that it is unsynchronized.)

The size, isEmpty, get, set, iterator, and listIterator operations run in constant time. The add

operation runs in amortized constant time, that is, adding n elements requires O(n) time. All of the other

operations run in linear time (roughly speaking). The constant factor is low compared to that for the

LinkedList implementation.

Each ArrayList instance has a capacity. The capacity is the size of the array used to store the elements

in the list. It is always at least as large as the list size. As elements are added to an ArrayList, its capacity

grows automatically. The details of the growth policy are not specified beyond the fact that adding an

element has constant amortized time cost.

An application can increase the capacity of an ArrayList instance before adding a large number of

elements using the ensureCapacity operation. This may reduce the amount of incremental reallocation.

Note that this implementation is not synchronized. If multiple threads access an ArrayList instance

concurrently, and at least one of the threads modifies the list structurally, it must be synchronized

externally. (A structural modification is any operation that adds or deletes one or more elements, or

explicitly resizes the backing array; merely setting the value of an element is not a structural

modification.) This is typically accomplished by synchronizing on some object that naturally encapsulates

the list. If no such object exists, the list should be "wrapped" using the Collections.synchronizedList

method. This is best done at creation time, to prevent accidental unsynchronized access to the list:

List list = Collections.synchronizedList(new ArrayList(...));

The iterators returned by this class's iterator and listIterator methods are fail-fast: if list is

structurally modified at any time after the iterator is created, in any way except through the iterator's own

remove or add methods, the iterator will throw a ConcurrentModificationException. Thus, in the face of

concurrent modification, the iterator fails quickly and cleanly, rather than risking arbitrary,

non-deterministic behavior at an undetermined time in the future.

ArrayList (Java 2 Platform SE v1.4.2) http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html

1 de 10 19/12/2010 22:03

Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally speaking, impossible

to make any hard guarantees in the presence of unsynchronized concurrent modification. Fail-fast

iterators throw ConcurrentModificationException on a best-effort basis. Therefore, it would be wrong

to write a program that depended on this exception for its correctness: the fail-fast behavior of iterators

should be used only to detect bugs.

This class is a member of the Java Collections Framework.

Since:

1.2

See Also:

Collection, List, LinkedList, Vector, Collections.synchronizedList(List), Serialized

Form

Field Summary

Fields inherited from class java.util.AbstractList

modCount

Constructor Summary
ArrayList()

 Constructs an empty list with an initial capacity of ten.

ArrayList(Collection c)

 Constructs a list containing the elements of the specified collection, in the order they are returned

by the collection's iterator.

ArrayList(int initialCapacity)

 Constructs an empty list with the specified initial capacity.

Method Summary
 void add(int index, Object element)

 Inserts the specified element at the specified position in this list.

 boolean add(Object o)

 Appends the specified element to the end of this list.

 boolean addAll(Collection c)

 Appends all of the elements in the specified Collection to the end of this list, in the

order that they are returned by the specified Collection's Iterator.

 boolean addAll(int index, Collection c)

 Inserts all of the elements in the specified Collection into this list, starting at the

specified position.

 void clear()

 Removes all of the elements from this list.

 Object clone()

 Returns a shallow copy of this ArrayList instance.

 boolean contains(Object elem)

 Returns true if this list contains the specified element.

 void ensureCapacity(int minCapacity)

 Increases the capacity of this ArrayList instance, if necessary, to ensure that it can

hold at least the number of elements specified by the minimum capacity argument.

ArrayList (Java 2 Platform SE v1.4.2) http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html

2 de 10 19/12/2010 22:03

 Object get(int index)

 Returns the element at the specified position in this list.

 int indexOf(Object elem)

 Searches for the first occurence of the given argument, testing for equality using the

equals method.

 boolean isEmpty()

 Tests if this list has no elements.

 int lastIndexOf(Object elem)

 Returns the index of the last occurrence of the specified object in this list.

 Object remove(int index)

 Removes the element at the specified position in this list.

protected

 void
removeRange(int fromIndex, int toIndex)

 Removes from this List all of the elements whose index is between fromIndex,

inclusive and toIndex, exclusive.

 Object set(int index, Object element)

 Replaces the element at the specified position in this list with the specified element.

 int size()

 Returns the number of elements in this list.

 Object[] toArray()

 Returns an array containing all of the elements in this list in the correct order.

 Object[] toArray(Object[] a)

 Returns an array containing all of the elements in this list in the correct order; the

runtime type of the returned array is that of the specified array.

 void trimToSize()

 Trims the capacity of this ArrayList instance to be the list's current size.

Methods inherited from class java.util.AbstractList

equals, hashCode, iterator, listIterator, listIterator, subList

Methods inherited from class java.util.AbstractCollection

containsAll, remove, removeAll, retainAll, toString

Methods inherited from class java.lang.Object

finalize, getClass, notify, notifyAll, wait, wait, wait

Methods inherited from interface java.util.List

containsAll, equals, hashCode, iterator, listIterator, listIterator, remove,

removeAll, retainAll, subList

Constructor Detail

ArrayList

public ArrayList(int initialCapacity)

Constructs an empty list with the specified initial capacity.

Parameters:

ArrayList (Java 2 Platform SE v1.4.2) http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html

3 de 10 19/12/2010 22:03

initialCapacity - the initial capacity of the list.

Throws:

IllegalArgumentException - if the specified initial capacity is negative

ArrayList

public ArrayList()

Constructs an empty list with an initial capacity of ten.

ArrayList

public ArrayList(Collection c)

Constructs a list containing the elements of the specified collection, in the order they are returned

by the collection's iterator. The ArrayList instance has an initial capacity of 110% the size of the

specified collection.

Parameters:

c - the collection whose elements are to be placed into this list.

Throws:

NullPointerException - if the specified collection is null.

Method Detail

trimToSize

public void trimToSize()

Trims the capacity of this ArrayList instance to be the list's current size. An application can use

this operation to minimize the storage of an ArrayList instance.

ensureCapacity

public void ensureCapacity(int minCapacity)

Increases the capacity of this ArrayList instance, if necessary, to ensure that it can hold at least

the number of elements specified by the minimum capacity argument.

Parameters:

minCapacity - the desired minimum capacity.

size

public int size()

Returns the number of elements in this list.

Specified by:

size in interface List

Specified by:

ArrayList (Java 2 Platform SE v1.4.2) http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html

4 de 10 19/12/2010 22:03

size in class AbstractCollection

Returns:

the number of elements in this list.

isEmpty

public boolean isEmpty()

Tests if this list has no elements.

Specified by:

isEmpty in interface List

Overrides:

isEmpty in class AbstractCollection

Returns:

true if this list has no elements; false otherwise.

contains

public boolean contains(Object elem)

Returns true if this list contains the specified element.

Specified by:

contains in interface List

Overrides:

contains in class AbstractCollection

Parameters:

elem - element whose presence in this List is to be tested.

Returns:

true if the specified element is present; false otherwise.

indexOf

public int indexOf(Object elem)

Searches for the first occurence of the given argument, testing for equality using the equals

method.

Specified by:

indexOf in interface List

Overrides:

indexOf in class AbstractList

Parameters:

elem - an object.

Returns:

the index of the first occurrence of the argument in this list; returns -1 if the object is not

found.

See Also:

Object.equals(Object)

ArrayList (Java 2 Platform SE v1.4.2) http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html

5 de 10 19/12/2010 22:03

lastIndexOf

public int lastIndexOf(Object elem)

Returns the index of the last occurrence of the specified object in this list.

Specified by:

lastIndexOf in interface List

Overrides:

lastIndexOf in class AbstractList

Parameters:

elem - the desired element.

Returns:

the index of the last occurrence of the specified object in this list; returns -1 if the object is

not found.

clone

public Object clone()

Returns a shallow copy of this ArrayList instance. (The elements themselves are not copied.)

Overrides:

clone in class Object

Returns:

a clone of this ArrayList instance.

See Also:

Cloneable

toArray

public Object[] toArray()

Returns an array containing all of the elements in this list in the correct order.

Specified by:

toArray in interface List

Overrides:

toArray in class AbstractCollection

Returns:

an array containing all of the elements in this list in the correct order.

toArray

public Object[] toArray(Object[] a)

Returns an array containing all of the elements in this list in the correct order; the runtime type of

the returned array is that of the specified array. If the list fits in the specified array, it is returned

therein. Otherwise, a new array is allocated with the runtime type of the specified array and the size

of this list.

If the list fits in the specified array with room to spare (i.e., the array has more elements than the

list), the element in the array immediately following the end of the collection is set to null. This is

ArrayList (Java 2 Platform SE v1.4.2) http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html

6 de 10 19/12/2010 22:03

useful in determining the length of the list only if the caller knows that the list does not contain any

null elements.

Specified by:

toArray in interface List

Overrides:

toArray in class AbstractCollection

Parameters:

a - the array into which the elements of the list are to be stored, if it is big enough; otherwise,

a new array of the same runtime type is allocated for this purpose.

Returns:

an array containing the elements of the list.

Throws:

ArrayStoreException - if the runtime type of a is not a supertype of the runtime type of

every element in this list.

get

public Object get(int index)

Returns the element at the specified position in this list.

Specified by:

get in interface List

Specified by:

get in class AbstractList

Parameters:

index - index of element to return.

Returns:

the element at the specified position in this list.

Throws:

IndexOutOfBoundsException - if index is out of range (index < 0 || index >=

size()).

set

public Object set(int index,

 Object element)

Replaces the element at the specified position in this list with the specified element.

Specified by:

set in interface List

Overrides:

set in class AbstractList

Parameters:

index - index of element to replace.

element - element to be stored at the specified position.

Returns:

the element previously at the specified position.

Throws:

IndexOutOfBoundsException - if index out of range (index < 0 || index >= size()).

ArrayList (Java 2 Platform SE v1.4.2) http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html

7 de 10 19/12/2010 22:03

add

public boolean add(Object o)

Appends the specified element to the end of this list.

Specified by:

add in interface List

Overrides:

add in class AbstractList

Parameters:

o - element to be appended to this list.

Returns:

true (as per the general contract of Collection.add).

add

public void add(int index,

 Object element)

Inserts the specified element at the specified position in this list. Shifts the element currently at that

position (if any) and any subsequent elements to the right (adds one to their indices).

Specified by:

add in interface List

Overrides:

add in class AbstractList

Parameters:

index - index at which the specified element is to be inserted.

element - element to be inserted.

Throws:

IndexOutOfBoundsException - if index is out of range (index < 0 || index > size()).

remove

public Object remove(int index)

Removes the element at the specified position in this list. Shifts any subsequent elements to the left

(subtracts one from their indices).

Specified by:

remove in interface List

Overrides:

remove in class AbstractList

Parameters:

index - the index of the element to removed.

Returns:

the element that was removed from the list.

Throws:

IndexOutOfBoundsException - if index out of range (index < 0 || index >= size()).

clear

ArrayList (Java 2 Platform SE v1.4.2) http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html

8 de 10 19/12/2010 22:03

public void clear()

Removes all of the elements from this list. The list will be empty after this call returns.

Specified by:

clear in interface List

Overrides:

clear in class AbstractList

addAll

public boolean addAll(Collection c)

Appends all of the elements in the specified Collection to the end of this list, in the order that they

are returned by the specified Collection's Iterator. The behavior of this operation is undefined if the

specified Collection is modified while the operation is in progress. (This implies that the behavior of

this call is undefined if the specified Collection is this list, and this list is nonempty.)

Specified by:

addAll in interface List

Overrides:

addAll in class AbstractCollection

Parameters:

c - the elements to be inserted into this list.

Returns:

true if this list changed as a result of the call.

Throws:

NullPointerException - if the specified collection is null.

See Also:

AbstractCollection.add(Object)

addAll

public boolean addAll(int index,

 Collection c)

Inserts all of the elements in the specified Collection into this list, starting at the specified position.

Shifts the element currently at that position (if any) and any subsequent elements to the right

(increases their indices). The new elements will appear in the list in the order that they are returned

by the specified Collection's iterator.

Specified by:

addAll in interface List

Overrides:

addAll in class AbstractList

Parameters:

index - index at which to insert first element from the specified collection.

c - elements to be inserted into this list.

Returns:

true if this list changed as a result of the call.

Throws:

IndexOutOfBoundsException - if index out of range (index < 0 || index > size()).

NullPointerException - if the specified Collection is null.

ArrayList (Java 2 Platform SE v1.4.2) http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html

9 de 10 19/12/2010 22:03

removeRange

protected void removeRange(int fromIndex,

 int toIndex)

Removes from this List all of the elements whose index is between fromIndex, inclusive and

toIndex, exclusive. Shifts any succeeding elements to the left (reduces their index). This call

shortens the list by (toIndex - fromIndex) elements. (If toIndex==fromIndex, this operation

has no effect.)

Overrides:

removeRange in class AbstractList

Parameters:

fromIndex - index of first element to be removed.

toIndex - index after last element to be removed.

Overview Package Class Use Tree Deprecated Index Help Java
TM
 2 Platform

Std. Ed. v1.4.2 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Submit a bug or feature

For further API reference and developer documentation, see Java 2 SDK SE Developer Documentation. That documentation

contains more detailed, developer-targeted descriptions, with conceptual overviews, definitions of terms, workarounds, and

working code examples.

Copyright © 2003, 2010 Oracle and/or its affiliates. All rights reserved. Use is subject to license terms. Also see the

documentation redistribution policy.

ArrayList (Java 2 Platform SE v1.4.2) http://download.oracle.com/javase/1.4.2/docs/api/java/util/ArrayList.html

10 de 10 19/12/2010 22:03

